CV. JOGJA GEOLOGI SURVEY Adalah Sebuah Badan Usaha Yang Bergerak di Bidang Jasa Konsultan Geologi dan Pertambangan, Kami Melayani Survey Geologi Maupun Perizinan IUP Tambang CV. JOGJA GEOLOGI SURVEY Didirikan Dengan Akta Notaries Siti Asmaul Khusnah SH No. 07 tanggal 12 Februari Tahun 2012 Kontak Kami Hp : 085323353108 Email : jgsconsultan@gmail.com
CV. Jogja Geologi Survey
Tuesday, 28 December 2010
MODUL ROCKWORK
Saturday, 11 September 2010
EKSPLORASI ENDAPAN BAUKSIT
EKSPLORASI ENDAPAN BAUKSIT
PENDAHULUAN
Latar Belakang
Bahan galian merupakan salah satu sumber daya alam non hayati yang keterjadiannya disebabkan oleh proses – proses geologi. Berdasarkan keterjadian dan sifatnya bahan galian dapat dibagi menjadi 3 (tiga) kelompok ; mineral logam, mineral industri serta batubara dan gambut. Karakteristik ketiga bahan galian tersebut berbeda, sehingga metode eksplorasi yang dilakukan juga berbeda. Oleh karena itu diperlukan berbagai macam metode untuk mengetahui keterdapatan, sebaran, kuantitas dan kualitasnya.
Kegiatan eksplorasi bahan galian umumnya melalui beberapa tahap eksplorasi, dimulai dari survey tinjau, prospeksi, eksplorasi umum sampai eksplorasi rinci. Setiap tahap eksplorasi yang dilakukan tidak hanya melibatkan ahli geologi tetapi juga ahli – ahli geofisika, geokimia, geodesi, teknik pemboran, geostatistik dan sebagainya.
Tujuan Penyelidikan
Kegiatan penyelidikan ini dilaksanakan adalah untuk menginventarisasi data – data yang berkaitan dengan sumber daya alam khususnya sumber daya mineral logam yang secara langsung sebagai bahan baku untuk industri tertentu seperti ; industri besi dan baja, kendaraan bermotor, dan lain-lain. Adapun tujuan penyelidikannya yaitu ;
a. Mengetahui dan mengamati batas sebaran endapan khromit
b. Mengetahui dan mengamati tipe endapan khromit
c. Menghitung dan menganalisis luasan sebaran endapan
d. Menghitung potensi sumber daya dan cadangan dari endapan khromit
Keadaan Lingkungan
Bijih bauksit terjadi di daerah tropis dan subtropis yang memungkinkan pelapukan yang sangat kuat. Bauksit terbentuk dari batuan yang mempunyai kadar alumunium nisbi tinggi, kadar Fe rendah dan tidak atau sedikit mengandung kuarsa (SiO¬2) bebas atau tidak mengandung sama sekali. Bentuknya menyerupai cellular atau tanah liat dan kadang-kadang berstruktur pisolitic. Secara makroskopis bauksit berbentuk amorf. Kekerasan bauksit berkisar antara 1 – 3 skala Mohs dan berat jenis berkisar antara 2,5 – 2,6.
Kondisi – kondisi utama yang memungkinkan terjadinya endapan bauksit secara optimum adalah ;
1. Adanya batuan yang mudah larut dan menghasilkan batuan sisa yang kaya alumunium
2. Adanya vegetasi dan bakteri yang mempercepat proses pelapukan
3. Porositas batuan yang tinggi, sehingga sirkulasi air berjalan dengan mudah
4. Adanya pergantian musim (cuaca) hujan dan kemarau (kering)
5. Adanya bahan yang tepat untuk pelarutan
6. Relief (bentuk permukaan) yang relatif rata, yang mana memungkinkan terjadinya pergerakan air dengan tingkat erosi minimum
7. Waktu yang cukup untuk terjadinya proses pelapukan
Pelaksanaan dan Peralatan
• Peta dasar
• Foto Udara
• Alat surveying, ukur atau GPS
• Alat kerja : 1. Palu 5. Alat geofisika
2. Kompas 6. Alat sampling
3. Meteran 7. Altimeter
4. Kantong sampel 8. Alat bor dll
• Alat tulis
• Alat komunikasi
• Keperluan sehari-hari
• Obat-obatan atau P3K
GEOLOGI UMUM
A. Proses Pembentukan Bahan Galian
Bahan galian adalah semua bahan atau subtansi yang terjadi dengan sendirinya di alam dan sangat dibutuhkan oleh manusia untuk berbagai keperluan industrinya. Bahan tersebut dapat berupa logam maupun non logam, dan dapat berupa bahan tunggal ataupun berupa campuran lebih dari satu bahan. Proses terbentuknya endapan bahan galian adalah komplek dan sering lebih dari satu proses yang bekerja bersama-sama. meskipun dari satu jenis bahan, misalnya logam, kalau terbentuk oleh proses yang berbeda maka akan menghasilkan tipe endapan yang berbeda pula.
Contohnya adalah endapan bijih besi, endapan ini dapat dihasilkan oleh proses diferensiasi magmatik oleh larutan hidrotermal, oleh proses sedimentasi ataupun oleh proses pelapukan. Tiap-tiap proses akan menghasilkan endapan bijih besi yang berbeda-beda baik dalam mutu, besarnya cadangan, maupun jenis mineral-mineral ikutannya.
Tabel. 1. Proses dan pembentukan jenis deposit
Proses Deposit yang dihasilkan
1. Konsentrasi magmatik Deposit magmatik
2. Sublimasi Sublimat
3. Kontak metasomatisme Deposit kontak metasomatik
4. Konsentrasi hidrotermal Pengisian celah-celah terbuka
Pertukaran ion pada batuan
5. Sedimentasi Lapisan-lapisan sedimenter Evaporit.
6. Pelapukan Konsentrasi residual Placer.
7. Metamorfisme Deposit metamorfik
8. Hidrologi Air tanah, garam tanah, endapan caliche.
Konsentrasi magmatik
Beberapa dari mineral yang terdapat dalam batuan beku banyak yang mempunyai nilai ekonomis, tetapi pada umumnya konsentrasi terlalu kecil untuk dapat diproduksi secara komersial, oleh karena itu diperlukan suatu proses konsentrasi untuk dapat mengumpulkan bahan-bahan tersebut dalam suatu deposit yang ekonomis. Konsentrasi tersebut terjadi pada saat batuan beku masih berupa magma, karenanya disebut konsentrasi oleh proses magmatik. Perkecualian pada intan, dimana tidak diperlukan konsentrasi, tetapi suatu kristal tunggal saja sudah cukup berharga.
Deposit bahan galian sebagai hasil endapan proses magmatik ini memiliki ciri-ciri adanya hubungan yang dekat dengan batuan beku intrusif dalam atau intrusif menengah. Konsentrasi magmatik dapat diklasifikasikan sebagai berikut :
a. Magmatik awal :
• Kristalisasi tanpa konsentrasi : intan
• Kristalisasi dan pemisahan : khron, platina
b. Magmatik akhir :
• Akumulasi dan atau injeksi larutan residual : besi titan, platina, titan, khron.
• Akumulasi dan pemisahan larutan : beberapa tipe deposit nikel dan tembaga.
• Pegmatit.
Hasil atau produk dari proses magmatik dapat dibagi menjadi 4 jenis, yaitu logam tunggal (native metal), oksida, silfisa dan batu mulia (gemstone).
Contoh logam tunggal : Platina, Emas, Perak, Besi-Nikel.
Contoh oksida : Besi (magnetit, hematit), Besi-titan (magnetit bertitan), Titan (ilmenit), Khrom (kromit), Tungsten (wolframit).
Contoh sulfide : Nikel-tembaga (kalkopirit), Nikel (pentlandit, molibdenit).
Contoh batu mulia : Intan, Garnet (almandit), Peridotit.
Deposit konsetrasi mekanis atau placer
Sisa pelapukan yang tidak dapat larut akan menghasilkan suatu selubung dari bahan-bahan lepas, diantaranya berat dan beberapa lagi ringan; ada yang getas (britlle) dan ada yang tahan (durable). Bahan-bahan tersebut oleh suatu media tertentuk seperti air yang mengalir (sungai), angin arus pantai (beach), ataupun ari permukaan (running water) dapat mengalami pemisahan bagian yang berat terhadap bagian yang ringan secara gravitasi dan membentuk endapan placer.
Konsentrasi hanya dapat terjadi kalau mineralberharga yang bersangkutan memiliki tiga sifat sebagai berikut :
- Berat jenisnya tinggi
- Tahan terhadap pelapukan kimiawi
- Tahan terhadap benturan-benturan fisik (durable)
Mineral placer yang memiliki sifat-sifat tersebut adalah emas, platina, tinstone, magnetit, khromit, ilmenit, rutil, tembaga, batu mulia, zircon, monazit, fosfat, tantalit, columbit. Diantara bahan-bahan tersebut di atas yang paling berharga sebagai deposit placer adalah emas, platina, tinstone, ilmenit (bijih titanium), intan dan ruby.
Deposit sebagai akibat oksidasi dan pengkayaan sekunder
Air dan oksigen adalah tenaga pelapukan kimiawi yang sangat kuat, kalau mereka bersentuhan dengan suatu deposit bijih, maka hasilnya adalah reaksi-reaksi kimia yang kadang-kadang dapat drastis dan merubah deposit yang sudah ada tersebut. Air permukaan yang mengandung oksigen akan bersifat sebagai bahan pelarut yang mampu melarutkan mineral-mineral tertentu. Suatu deposit bijih dapat teroksidasi dan dapat kehilangan banyak kandungan mineral yang berharga karena tercuci (leached), kemudian terbawa ke bawah oleh air permukaan yang sedang turun ke bawah (meresap ke bawah).
Pada bagian bawah, akhirnya larutan tersebut mengendapkan kandungan-kandungan mineral logamnya menjadi endapan bijih teroksidasi (oxidized ores), ini terjadi di atas muka air tanah. Pada saat larutan memasuki air tanah di bawah muka air tanah, mereka memasuki zona dimana tidak ada oksigen dan kandungan logamnya lalu diendapkan dalam bentuk logam-logam sulfida. Proses tersebut dinamakan pengkayaan sulfida sekunder. Tentu saja gambaran tersebut tidak terjadi pada semua deposit bijih yang terkena air, karena tidak semua deposit bijih mengandung logam yang dapat teroksidasi, atau iklim yang tidak memungkinkan terjadinya pelarutan yang kuat. Jadi haruslah ada kondisi khusus yang mengangkut waktu, iklim, topografi dan jenis bijih tertentu untuk dapat terjadinya zona teroksidasi dan zona diperkaya.
GEOLOGI DAN SUMBER DAYA MINERAL
Genesa Endapan Bauksit
Bauksit terbentuk dari batuan yang mengandung unsur Al. Batuan tersebut antara lain nepheline, syenit, granit, andesit, dolerite, gabro, basalt, hornfels, schist, slate, kaolinitic, shale, limestone dan phonolite. Apabila batuan-batuan tersebut mengalami pelapukan, mineral yang mudah larut akan terlarutkan, seperti mineral – mineral alkali, sedangkan mineral – mineral yang tahan akan pelapukan akan terakumulasikan.
Di daerah tropis, pada kondisi tertentu batuan yang terbentuk dari mineral silikat dan lempung akan terpecah-pecah dan silikanya terpisahkan sedangkan oksida alumunium dan oksida besi terkonsentrasi sebagai residu. Proses ini berlangsung terus dalam waktu yang cukup dan produk pelapukan terhindar dari erosi, akan menghasilkan endapan lateritik.
Kandungan alumunium yang tinggi di batuan asal bukan merupakan syarat utama dalam pembentukan bauksit, tetapi yang lebih penting adalah intensitas dan lamanya proses laterisasi.
Kondisi – kondisi utama yang memungkinkan terjadinya endapan bauksit secara optimum adalah ;
1. Adanya batuan yang mudah larut dan menghasilkan batuan sisa yang kaya alumunium
2. Adanya vegetasi dan bakteri yang mempercepat proses pelapukan
3. Porositas batuan yang tinggi, sehingga sirkulasi air berjalan dengan mudah
4. Adanya pergantian musim (cuaca) hujan dan kemarau (kering)
5. Adanya bahan yang tepat untuk pelarutan
6. Relief (bentuk permukaan) yang relatif rata, yang mana memungkinkan terjadinya pergerakan air dengan tingkat erosi minimum
7. Waktu yang cukup untuk terjadinya proses pelapukan
GERAKAN TANAH
Gerakan Tanah (Longsoran)
Gerakan tanah adalah suatu konsekuensi fenomena dinamis alam untuk mencapai kondisi baru akibat gangguan keseimbangan lereng yang terjadi, baik secara alamiah maupun akibat ulah manusia. Gerakan tanah akan terjadi pada suatu lereng, jika ada keadaan ketidakseimbangan yang menyebabkan terjadinya suatu proses mekanis, mengakibatkan sebagian dari lereng tersebut bergerak mengikuti gaya gravitasi, dan selanjutnya setelah terjadi longsor, lereng akan seimbang atau stabil kembali. Jadi longsor merupakan pergerakan massa tanah atau batuan menuruni lereng mengikuti gaya gravitasi akibat terganggunya kestabilan lereng. Apabila massa yang bergerak pada lereng ini didominasi oleh tanah dan gerakannya melalui suatu bidang pada lereng, baik berupa bidang miring maupun lengkung, maka proses pergerakan tersebut disebut sebagai longsoran tanah. Menurut Suripin (2002) tanah longsor adalah merupakan bentuk erosi dimana pengangkutan atau gerakan massa tanah terjadi pada suatu saat dalam volume yang relatif besar. Ditinjau dari segi gerakannya, maka selain erosi longsor masih ada beberapa erosi akibat gerakan massa tanah, yaitu rayapan (creep), runtuhan batuan (rock fall), dan aliran lumpur (mud flow). Karena massa yang bergerak dalam longsor merupakan massa yang besar maka sering kejadian longsor akan membawa korban, berupa kerusakan lingkungan, yaitu lahan pertanian, permukiman, dan infrastruktur, serta hilangnya nyawa manusia.
Proses terjadinya gerakan tanah melibatkan interaksi yang kompleks antara aspek geologi, geomorfologi, hidrologi, curah hujan, dan tata guna lahan.
Secara umum faktor pengontrol terjadinya longsor pada suatu lereng dikelompokan menjadi faktor internal dan eksternal. Faktor internal terdiri dari kondisi geologi batuan dan tanah penyusun lereng, kemiringan lereng (geomorfologi lereng), hidrologi dan struktur geologi. Sedangkan faktor eksternal yang disebut juga sebagai faktor pemicu yaitu curah hujan, vegetasi penutup, penggunaan lahan pada lereng, dan getaran gempa.
Undang-undang Republik Indonesia Nomor 26 Tahun 2007 tentang Penataan Ruang menyebutkan bahwa daerah yang memiliki kerawanan terhadap bencana tanah longsor dikategorikan dalam kawasan fungsi lindung. Sedangkan batasan kawasan lindung diatur lebih lanjut dalam Surat Keputusan Menteri Pertanian Republik Indonesia Nomor 837/KPTS/UM/11/1980 tentang Kriteria dan Tata Cara Penetapan Kawasan Lindung dan Kawasan Budidaya.
Daerah perbukitan atau pegunungan yang membentuk lahan miring merupakan daerah rawan terjadi gerakan tanah. Kelerengan dengan kemiringan lebih dari 20o (atau sekitar 40%) memiliki potensi untuk bergerak atau longsor, namun tidak selalu lereng atau lahan yang miring punya potensi untuk longsor tergantung dari kondisi geologi yang bekerja pada lereng tersebut.
Potensi terjadinya gerakan tanah pada lereng tergantung pada kondisi tanah dan batuan penyusunnya, dimana salah satu proses geologi yang menjadi penyebab utama terjadinya gerakan tanah adalah pelapukan batuan (Selby, 1993).
Proses pelapukan batuan yang sangat intensif banyak dijumpai di negara-negara yang memiliki iklim tropis seperti Indonesia. Tingginya curah hujan dan penyinaran matahari menjadikan tinggi pula proses pelapukan batuan. Batuan yang banyak mengalami pelapukan akan menyebabkan berkurangnya kekuatan batuan yang pada akhirnya membentuk lapisan batuan lemah dan tanah residu yang tebal. Apabila hal ini terjadi pada daerah lereng, maka lereng akan menjadi kritis. Faktor geologi lainnya yang menjadi pemicu terjadinya gerakan tanah adalah aktivitas volkanik dan tektonik, faktor geologi ini dapat dianalisis melalui variabel tekstur tanah dan jenis batuan. Tekstur tanah dan jenis batuan merupakan salah satu faktor penyebab terjadinya gerakan tanah yang diukur berdasarkan sifat tanah dan kondisi fisik batuan.
Disamping itu curah hujan yang meningkatkan presepitasi dan kejenuhan tanah serta naiknya muka air tanah, maka jika hal ini terjadi pada lereng dengan material penyusun (tanah dan atau batuan) yang lemah maka akan menyebabkan berkurangnya kuat geser tanah/batuan dan menambah berat massa tanah. Pada dasarnya ada dua tipe hujan pemicu terjadinya longsor, yaitu hujan deras yang mencapai 70 mm hingga 100 mm perhari dan hujan kurang deras namun berlangsung menerus selama beberapa jam hingga beberapa hari yang kemudian disusul dengan hujan deras sesaat. Hujan juga dapat menyebabkan terjadinya aliran permukaan yang dapat menyebabkan terjadinya erosi pada kaki lereng dan berpotensi menambah besaran sudut kelerengan yang akan berpotensi menyebabkan longsor.
Dalam analisis spasial, data intensitas curah hujan diwujudkan dalam bentuk peta isohiet yaitu peta yang menunjukkan deliniasi daerah dengan curah hujan yang sama. Berdasarkan peta isohiet tersebut, dapat ditentukan penilaian intensitas curah hujannya.
Tata guna lahan merupakan bagian dari aktivitas manusia, secara umum yang dapat menyebabkan longsor adalah yang berhubungan dengan pembangunan infrastruktur seperti pemotongan lereng yang merubah kelerengan, hal ini juga akan merubah aliran air permukaan dan muka air tanah. Penggundulan hutan maupun penggunaan lahan yang tidak memperhatikan ekosistem dapat pula memicu terjadinya gerakan tanah dan erosi. Secara kuantitatif, faktor pemanfaatan lahan dapat dianalisis melalui variabel jenis kegiatan dari pemanfaatan lahan yang terjadi.
Tuesday, 20 July 2010
Geologi Bayat
Geologi Regional Bayat, KlatenPosted: July 12, 2010 by ibnu_geologist in Geology Time
KONDISI GEOLOGI REGIONAL
1. Kondisi Umum Kecamatan Bayat
Lokasi daerah Bayat berada kurang lebih 25 km di sebelah timur kota Yogyakarta. Secara umum fisiografi Bayat dibagi menjadi dua wilayah yaitu wilayah di sebelah utara Kampus Lapangan terutama di sisi utara jala raya Kecamatan Wedi yang disebut sebagai area Perbukitan Jiwo (Jiwo Hills), dan area di sebelah selatan Kampus Lapangan yang merupakan wilayah Pegunungan Selatan (Southern Mountains).
2 Kondisi Geomorfologi
2.1 Perbukitan Jiwo
Perbukitan Jiwo merupakan inlier dari batuan Pre-Tertiary dan Tertiary di sekitar endapan Quartenary, terutama terdiri dari endapan fluvio-volcanic yang berasal dari G. Merapi. Elevasi tertinggi dari puncak-puncak yang ada tidak lebih dari 400 m di atas muka air laut, sehingga perbukitan tersebut merupakan suatu perbukitan rendah.
Perbukitan Jiwo dibagi menjadi dua wilayah yaitu Jiwo Barat dan Jiwo Timur yang keduanya dipisahkan oleh Sungai Dengkeng secara antecedent. Sungai Dengkeng sendiri mengalir mengitari komplek Jiwo Barat, semula mengalir ke arah South-Southwest, berbelok ke arah East kemudian ke North memotong perbukitan dan selanjutnya mengalir ke arah Northeast. Sungai Dengkeng ini merupakan pengering utama dari dataran rendah di sekitar Perbukitan Jiwo.Gambar 4.2. Pembagian fisiografi daerah Bayat di mana Perbukitan Jiwo Barat dan Timur dipisahkan oleh Sungai Dengkeng
Dataran rendah ini semula merupakan rawa-rawa yang luas akibat air yang mengalir dari lembah G. Merapi tertahan oleh Pegunungan Selatan. Genangan air ini, di utara Perbukitan Jiwo mengendapkan pasir yang berasal dari lahar. Sedangkan di selatan atau pada bagian lekukan antarbukit di Perbukitan Jiwo merupakan endapan air tenang yang berupa lempung hitam, suatu sedimen Merapi yang subur ini dikeringkan (direklamasi) oleh pemerintah Kolonial Belanda untuk dijadikan daerah perkebunan. Reklamasi ini dilakukan degan cara membuat saluran-saluran yang ditanggul cukup tinggi sehingga air yang datang dari arah G. Merapi akan tertampung di sungai sedangkan daerah dataran rendahnya yang semula berupa rawa-rawa berubah menjadi tanah kering yang digunakan untuk perkebunan. Sebagian dari rawayang semula luas itu disisakan di daerah yang dikelilingi Puncak Sari, Tugu, dan Kampak di Jiwo Barat, dikenal sebagai Rawa Jombor. Rawa yang disisakan itu berfungsi sebagai tendon untuk keperluan irigasi darah perkebunan di dataran sebelah utara Perbukitan Jiwo Timur.
Untuk mengalirakan air dari rawa-rawa tersebut, dibuat saluran buatan dari sudut Southwest rawa-rawa menembus perbukitan batuan metamorfik di G. Pegat mengalir ke timur melewati Desa Sedan dan memotong Sungai Dengkeng lewat aqueduct di sebelah seatan Jotangan menerus ke arah timur.
Daerah perbukitan yang tersusun oleh batugamping menunjukkan perbukitan memanjang dengan punggung yang tumpul sehingga kenampakan punca-puncak tidak begitu nyata. Tebing-tebing perbukitannya tidak terlalu terbiku sehingga alur-alurnya tidak banyak dijumpai (Perbukitan Bawak-Temas di Jiwo Timur dan Tugu-Kampak di Jiwo Barat). Untuk daerah yang tersusun oleh batuan metamorfik perbukitannya menunjukkan relief yang lebih nyata dengan tebing-tebing yang terbiku kuat. Kuatnya hasil penorehan tersebut menghasilkan akumulasi endapan hasil erosi di kaki perbukitan ini yang dikenal sebagai colluvial. Puncak-puncak perbukitan yang tersusun dari batuan metamorfik terlihat menonjol dan beberapa diantaranya cenderung berbentuk kerucut seperti puncak Jabalkat dan puncak Semanggu. Daerah degan relief kuat ini dijumpai daerah Jiwo Timur mulai dari puncak Konang kea rah timur hingga puncak Semanggu dan Jokotuo. Daerah di sekitar puncak Pendul merupakan satu-satunya tubuh bukit yang seluruhnya tersusun oleh batuan beku. Kondisi morfologinya cukup kasar mirip perbukitan metamorfik namun relief yang ditunjukkan puncaknya tidak sekuat perbukitan metamorfik.
n2.2 Daerah Jiwo Barat
Jiwo Barat terdiri dari deretan perbukitan G. Kampak, G. Tugu, G. Sari, G. Kebo, G. Merak, G. Cakaran, dan G. Jabalkat. G. Kampak dan G. Tugu memiliki litologi batugamping berlapis, putih kekuningan, kompak, tebal lapisan 20 – 40 cm. Di daerah G. Kampak batugamping tersebut sebagian besar merupakan suatu tubuh yang massif, menunjukkan adanya asosiasi dengan kompleks terumbu (reef). Di antara G. Tugu dan G. Sari batugamping tersebut mengalami kontak langsung dengan batuan metamorfik (mica schist).
Daerah Jiwo Barat memiliki puncak-puncak bukit berarah utara-selatan yang diwakili oleh puncak Jabalkat, Kebo, Merak, Cakaran, Budo, Sari, dan Tugu dengan di bagian paling utara membelok ke arah barat yaitu G. Kampak.
Batuan metamorf di daerah ini mencakup daerah di sekitar G. Sari, G. Kebo, G. Merak, G. Cakaran, dan G. Jabalkat yang secara umum berupa sekis mika, filit, dan banyak mengandung mineral kuarsa. Di sekitar daerah G. Sari, G. Kebo, dan G. Merak pada sekis mika tersebut dijumpai bongkah-bongkah andesit dan mikrodiorit. Zona-zona lapukannya berupa spheroidal weathering yang banyak dijumpai di tepi jalan desa. Batuan beku tersebut merupakan batuan terobosan yang mengenai tubuh sekis mika . singkapan yang baik dijumpai di dasar sungai-sungai kecil yang menunjukkan kekar kolom (columnar joint).
Batuan metamorfik yang dijumpai juga berupa filit sekis klorit, sekis talk, terdapat mieral garnet, kuarsit serta marmer di sekitar G. Cakaran, dan G. Jabalkat. Sedangkan pada bagian puncak dari kedua bukit itumasih ditemukan bongkah-bongkah konglomerat kuarsa. Sedangkan di sebelah barat G. Cakaran pada area pedesaan di tepian Rawa Jombor masih dapat ditemukan sisa-sisa konglomerat kuarsa serta batupasir. Sampai saat ini batuan metamorfik tersebut ditafsirkan sebagai batuan berumur Pre-Tertiary, sedagkan batupasir dan konglomerat dimasukkan ke dalam Formasi Wungkal.
Di daerah ini dijumpai dua inlier (isolated hill) masing-masing di bukit Wungkal dan bukit Salam. Bukit Wungkal semakin lama semakin rendah akibat penggalian penduduk untuk mengambil batu asah (batu wungkal) yang terdapat di bukit tersebut.
2.3 Daerah Jiwo Timur
Daerah ini mencakup sebelah timur Sungai Dengkeng yang merupakan deretan perbukitan yang terdiri dari Gunung Konang, Gunung Pendul, Gunung Semangu, Di lereng selatan Gunung Pendul hingga mencapai bagian puncak, terutama mulai dari sebelah utara Desa Dowo dijumpai batu pasir berlapis, kadang kala terdapat £ragmen sekis mika ada di dalamnya. Sedangkan di bagian timur Gunung Pendul tersingkap batu lempung abu-abu berlapis, keras, mengalami deformasi lokal secara kuat hingga terhancurkan.
Hubungan antar satuan batuan tersebut masih memberikan berbagai kemungkinan karena kontak antar satuan terkadang tertutup oleh koluvial di daerah dataran. Kepastian stratigrafis antar satuan batuan tersebut barn dapat diyakini jika telah ada pengukuran umur absolut. Walaupun demikian berbagai pendekatan penyelidikan serta rekontruksi stratigrafis telah banyak dilakukan oleh para ahli.
Daerah perbukitan Jiwo Timur mempunyai puncak-puncak bukit berarah barat-timur yang diwakili oleh puncak-puncak Konang, Pendul dan Temas, Gunung J okotuo dan Gunung T emas.
Gunung Konang dan Gunung Semangu merupakan tubuh batuan sekis-mika, berfoliasi cukup baik, sedangkan Gunung Pendul merupakan tubuh intrusi mikrodiorit. Gunung Jokotuo merupakan batuan metasedimen (marmer) dimana pada tempat tersebut dijumpai tanda-tanda struktur pense saran. Sedangkan Gunung Temas merupakan tubuh batu gamping berlapis.
Di sebelah utara Gunung Pendul dijumpai singkapan batu gampmg nummulites, berwarna abu-abu dan sangat kompak, disekitar batu gamping nummulites tersebut terdapat batu pasir berlapis. Penyebaran batugamping nummulites dijumpai secara setempat-setempat terutam di sekitar desa Padasan, dengan percabangan ke arah utara yang diwakili oleh puncak Jopkotuo dan Bawak.
Di bagian utara dan tenggara Perbukitan Jiwo timur terdapat bukit terisolir yang menonjol dan dataran aluvial yang ada di sekitamya. Inlier (isolited hill) ini adalah bukit Jeto di utara dan bukit Lanang di tenggara. Bukit Jeto secara umum tersusun oleh batu gamping Neogen yang bertumpu secara tidak selaras di atas batuan metamorf, sedangkan bukit Lanang secara keseluruhan tersusun oleh batu gamping Neogen.
2.4 Daerah Pegunungan selatan
Di sebelah selatan Kampus Lapangan hingga mencapai puncak Pegunungan Baturagung, secara stratigrafis sudah tennasuk wilayah Pegunungan Selatan. Secara struktural deretan pegunungan tersebut, pada penampang utara-selatan, merupakan suatu pegunungan blok patahan yang membujur barat-timur.
Untuk daerah di sekitar kampus lapangan, litologi yang dijumpai merupakan bagian dari Fonnasi Kebo, Butak dan Semilir. Beberapa lokasi singkapan penting penting antard lain sekitar Lanang dan desa Tegalrejo dijumpai” batu pasir tufan dengan sisipan serpih. Di selatan desa Banyuuripan, yaitu desa Kalisogo, ditemukan breksi autoklastik dengan pola retakan radial yang ditafsirkan sebagai produk submarine breccia. Semakin ke selatan, sekitar desa Tanggul, Jarum dan Pendem, terdapat singkapan endapan kip as aluvial. Di bagian barat daya, sekitar desa Tegalrejo, dijumpai batu pasir berlapis dengan pelapukan mengulit bawang. Di bagian timumya terdapat batu lempung abu-abu dengan zona kekar.
Naik ke arah puncak Baturagung, perlapisan-Iperlapisan batuan sedimen akan dijumpai dengan baik, dapat berupa batu pasir, batu lempung, batu pasir krikilan, batu pasir tufa maupun sisipan breksi. Pengamtan sepanjang jalan ini sangat penting untuk melacak keaadaan strtigrafis serta struktur geologi di daerah selatan Kampus Lapangan.
3 Kondisi Statigrafi Regional
Batuan tertua yang tersingkap di daerah Bayat terdiri dari batuan metamorf berupa filtit, sekis, batu sabak dan marmer. Penentuan umur yang tepat untuk batuan malihan hingga saat ini masih belum ada. Satu-satunya data tidak langsung untuk perkiraan umurnya adalah didasarkan fosil tunggal Orbitolina yang diketemukan oleh Bothe (1927) di dalam fragmen konglomerat yang menunjukkan umur Kapur. Dikarenakan umur batuan sedimen tertua yang menutup batuan malihan tersebut berumur awal Tersier (batu pasir batu gamping Eosen), maka umur batuan malihan tersebut disebut batuan Pre-Tertiary Rocks.
Secara tidak selaras menumpang di atas batuan malihan adalah batu pasir yang tidak garnpingan sarnpai sedikit garnpingan dan batu lempung, kemudian di atasnya tertutup oleh batu gamping yang mengandung fosil nummulites yang melimpah dan bagian atasnya diakhiri oleh batu gamping Discocyc1ina, menunjukkan lingkungan laut dalarn. Keberadaan forminifera besar ini bersarna dengan foraminifera plangtonik yang sangat jarang ditemukan di dalam batu lempung gampingan, menunjukkna umur Eosen Tengah hingga Eisen Atas. Secara resmi, batuan berumur Eosen ini disebut Formasi Wungkal-Garnping. Keduanya, batuan malihan dan Formasi Wungkal-Gamping diterobos oleh batuan beku menengah bertipe dioritik.
Diorit di daerah Jiwo merupakan penyusun utam Gunung Pendul, yang terletak di bagJn timur Perbukitan Jiwo. Diorit ini kemungkinan bertipe dike. Singkapan batuan beku di Watuprahu (sisi utara Gunung Pendul) secara stratigrafi di atas batuan Eosen yang miring ke arah selatan. Batuan beku ini secara stratigrafi terletak di bawah batu pasir dan batu garnping yang masih mempunyai kemiringan lapisan ke arah selatan. Penentuan umur pada dike! intrusi pendul oleh Soeria Atmadja dan kawan-kawan (1991) menghasilkan sekitar 34 juta tahun, dimana hasil ini kurang lebih sesuai dengan teori Bemmelen (1949), yang menfsirkan bahwa batuan beku tersebut adalah merupakan leher/ neck dari gunung api Oligosen. Mengenai genetik dan generasi magmatisme dari diorit di Perbukitan Jiwo masih memerlukan kajian yang lebih hati-hati.
Sebelum kala Eosen tangah, daerah Jiwo mulai tererosi. Erosi tersebut disebabkan oleh pengangkatan atau penurunan muka air laut selama peri ode akhir oligosen. Proses erosi terse but telah menurunkan permukaan daratan yang ada, kemudian disusul oleh periode transgresi dan menghasilkan pengendapan batu garnping dimulai pada kala Miosen Tengah. Di daerah Perbukitan Jiwo tersebut mempunyai ciri litologi yang sarna dengan Formasi Oyo yang tersingkap lenih banyak di Pegunungan Selatan (daerah Sambipitu Nglipar dan sekitarnya).
Di daerah Bayat tidak ada sedimen laut yang tersingkap di antara Formasi WungkalGampingan dan Formasi Oyo. Keadaan ini sang at berbeda dengan Pegunungan Baturagung di selatannya. Di sini ketebalan batuan volkaniklastik-marin yang dicirikan turbidit dan sedimen hasil pengendapan aliran gravitasi lainnya tersingkap dengan baik. Perbedaan-perbedaan ini kemungkinan disebabkan oleh kompleks sistem sesar yang memisahkan daerah Perbukitan Jiwo dengan Pegunungan Baturagung yang telah aktif sejak Tersier Tengah.
Selama zaman Kuarter, pengendapan batu gamping telah berakhir. Pengangkatan yang diikuti dengan proses erosi menyebabkan daerah Perbukitan Jiwo berubah menjadi daerah lingkungan darat. Pasir vulkanik yang berasal dari gunung api Merapi yang masih aktif mempengaruhi proses sedimentasi endapan aluvial terutama di sebelah utara dan barat laut dari Perbukitan Jiwo.
Keadaan stratigrafi Pegunugan Selatan, dari tua ke muda yaitu :
Formasi Kebo, berupa batu pasir vulkanik, tufa, serpih dengan sisipan lava, umur Oligosen (N2-N3), ketebalan formasi sekitar 800 meter.
Formasi Butak, dengan ketebalan 750 meter berumur Miosen awal bagian bawah (N4), terdiri dari breksi polomik, batu pasir dan serpih.
Formasi Semilir, berupa tufa, lapili, breksi piroklastik, kadang ada sisipan lempung dan batu pasir vulkanik. Umur N5-N9. Bagian tengah meJ1iari dengan Formasi Nglanggran.
Formasi Nglanggran, berupa breksi vulkanik, batu pasir vulkanik, lava dan breksi aliran.
Dari puncak Baturagung ke arah selatan, yaitu menuju dataran Wonosari akan dijumpai Formasi Sambipitu, Formasi Oyo, Formasi Wonosari dan
Formasi Kepek.
geologi
Dunia Geologi
Saturday, March 15, 2008
Waspadailah Tanda-Tanda Datangnya Tsunami!
Gelombang tsunami memiliki beragam tanda atau fenomena alamiah. Semua itu berdasarkan hasil yang dikumpulkan ilmuwan dari berbagai hasil penelitian dan dokumentasi mengenai bencana itu khususnya yang berasal dari negara rawan tsunami seperti Jepang.
"Dari hasil laporan dokumen lama serta prasasti yang ada di Jepang, serta pengalaman dari hasil survei lapangan memperlihatkan beberapa tanda alami sebelum datangnya tsunami," kata Ketua Kelompok Riset Tsunami Institut Teknologi Bandung (ITB), Dr Eng Hamzah Latief.
Eng Hamzah Latief memaparkan, tanda-tanda tersebut adalah gerakan tanah, tsunami forerunners atau riakan air laut, tarik surutnya muka air laut, tsunami bore atau pembentukan dinding muka air di tengah laut, timbulnya suara abnormal, pengamatan visual ke arah lepas pantai, serta pengamatan melalui indera penciuman dan perasa.
Gerakan tanah, ujar dia, timbul karena penjalaran gelombang di lapisan bumi padat akibat gempa, sedangkan tsunami forerunners adalah deretan riak muka laut yang mendahului kedatangan tsunami utama.
Hamzah menuturkan, menurut sejumlah pakar dari Jepang, tsunami forerunners tidak selamanya muncul. Seperti di pantai utara dan selatan benua Amerika, fenomena tersebut tidak hadir karena kemiringan alami dan inisial tsunami terhadap pantai.
"Sedangkan kehadiran forerunners di tempat lain seperti di Jepang adalah akibat terjadinya resonansi atau gelombang ikutan tsunami awal di teluk dan di paparan benua sebelum tsunami utama datang," kata peraih gelar doktor spesialisasi tsunami dari Universitas Tohoku, Jepang itu.
Mengenai tsunami bore atau dinding muka air di laut, Hamzah menjelaskan bahwa untuk daerah landai yang sedimennya tergerus tsunami maka dinding air tersebut akan berwarna hitam atau kelabu, sedangkan untuk daerah berkarang maka dinding itu berwarna putih yang dipenuhi oleh busa air laut.
Sementara itu, lanjutnya, banyak dokumen lama di Jepang yang melaporkan timbulnya suara abnormal sebelum kedatangan tsunami seperti yang terukir pada Monumen Tsunami di Prefektur Aomori yang berbunyi "Gempa, suara menderu, kemudian tsunami".
"Ini menganjurkan agar melakukan evakuasi jika terdengar suara abnormal setelah terjadinya gempa," katanya.
Hamzah mengungkapkan, suara aneh juga diceritakan oleh saksi mata di Biak (1996), Banyuwangi (1994), dan Flores (1992) di mana suara itu dideskripsikan antara lain seperti bunyi helikopter, suara drum band, serta desingan roket. Dengan fakta ini maka jika terdengar suara drum band apalagi yang misterius setelah gempa, kita tidak bisa keburu bergoyang senang dulu menganggap hiburan telah datang, hal ini malah menandakan bencana datang.
Ia menjelaskan lebih lanjut, suara tersebut berhubungan dengan posisi tsunami saat menjalar atau saat menghantam tebing batu dan pantai yang landai.
"Terdapat pula saksi mata yang berkata, sesaat sebelum tsunami datang terjadi angin dengan hawa agak dingin bercampur dengan bau garam laut yang cukup kuat, yang kemungkinan besar akibat tolakan air laut di lepas pantai," kata Hamzah.
Ini semua yang patut kita waspadai terutama di saat bencana gempa berkekuatan besar terus mendera negara kita ini. (kapanlagi}
Posted by Webmaster at 5:16 PM 1 comments
Monday, 31 May 2010
BIJIH BESI
Besi merupakan logam kedua yang paling banyak di bumi ini. Karakter dari endapan besi ini bisa berupa endapan logam yang berdiri sendiri namun seringkali ditemukan berasosiasi dengan mineral logam lainnya. Kadang besi terdapat sebagai kandungan logam tanah (residual), namun jarang yang memiliki nilai ekonomis tinggi. Endapan besi yang ekonomis umumnya berupa Magnetite, Hematite, Limonite dan Siderite. Kadang kala dapat berupa mineral: Pyrite, Pyrhotite, Marcasite, dan Chamosite.Beberapa jenis genesa dan endapan yang memungkinkan endapan besi bernilai ekonomis antara lain :
1. Magmatik: Magnetite dan Titaniferous Magnetite
2. Metasomatik kontak: Magnetite dan Specularite
3. Pergantian/replacement: Magnetite dan Hematite
4. Sedimentasi/placer: Hematite, Limonite, dan Siderite
5. Konsentrasi mekanik dan residual: Hematite, Magnetite dan Limonite
6. Oksidasi: Limonite dan Hematite
7. Letusan Gunung Api
Dari mineral-mineral bijih besi, magnetit adalah mineral dengan kandungan Fe paling tinggi, tetapi terdapat dalam jumlah kecil. Sementara hematit merupakan mineral bijih utama yang dibutuhkan dalam industri besi. Mineral-mineral pembawa besi dengan nilai ekonomis dengan susunan kimia, kandungan Fe dan klasifikasi komersil dapat dilihat pada Tabel dibawah ini:
Tabel mineral-mineral bijih besi bernilai ekonomis
Mineral
Susunan kimia
Kandungan Fe (%)
Klasifikasi komersil
Magnetit
FeO, Fe2O3
72,4
Magnetik atau bijih hitam
Hematit
Fe2O3
70,0
Bijih merah
Limonit
Fe2O3.nH2O
59 – 63
Bijih coklat
Siderit
FeCO3
48,2
Spathic, black band, clay ironstone
Sumber : Iron & Ferroalloy Metals in (ed) M. L. Jensen & A. M. Bafeman, 1981; Economic Mineral Deposits, P. 392.
Besi primer ( ore deposits )
Proses terjadinya cebakan bahan galian bijih besi berhubungan erat dengan adanya peristiwa tektonik pra-mineralisasi. Akibat peristiwa tektonik, terbentuklah struktur sesar, struktur sesar ini merupakan zona lemah yang memungkinkan terjadinya magmatisme, yaitu intrusi magma menerobos batuan tua. Akibat adanya kontak magmatik ini, terjadilah proses rekristalisasi, alterasi, mineralisasi, dan penggantian (replacement) pada bagian kontak magma dengan batuan yang diterobosnya.
Perubahan ini disebabkan karena adanya panas dan bahan cair (fluida) yang berasal dari aktivitas magma tersebut. Proses penerobosan magma pada zona lemah ini hingga membeku umumnya disertai dengan kontak metamorfosa. Kontak metamorfosa juga melibatkan batuan samping sehingga menimbulkan bahan cair (fluida) seperti cairan magmatik dan metamorfik yang banyak mengandung bijih.
Besi sekunder ( endapan placer )
Cebakan mineral alochton dibentuk oleh kumpulan mineral berat melalui proses sedimentasi, secara alamiah terpisah karena gravitasi dan dibantu pergerakan media cair, padat dan gas/udara. Kerapatan konsentrasi mineral-mineral berat tersebut tergantung kepada tingkat kebebasannya dari sumber, berat jenis, ketahanan kimiawi hingga lamanya pelapukan dan mekanisma. Dengan nilai ekonomi yang dimilikinya para ahli geologi menyebut endapan alochton tersebut sebagai cebakan placer.
Jenis cebakan ini telah terbentuk dalam semua waktu geologi,
tetapi kebanyakan pada umur Tersier dan masa kini, sebagian besar merupakan cadangan berukuran kecil dan sering terkumpul dalam waktu singkat karena tererosi. Kebanyakan cebakan berkadar rendah tetapi dapat ditambang karena berupa partikel bebas, mudah dikerjakan dengan tanpa penghancuran; dimana pemisahannya dapat menggunakan alat semi-mobile dan relatif murah. Penambangannya biasanya dengan cara pengerukan, yang merupakan metoda penambangan termurah.
Cebakan-cebakan placer berdasarkan genesanya:
G e n e s a
J e n i s
Terakumulasi in situ selama pelapukan
Placer residual
Terkonsentrasi dalam media padat yang bergerak
Placer eluvial
Terkonsentrasi dalam media cair yang bergerak (air)
· Placer aluvial atau sungai
· Placer pantai
Terkonsentrasi dalam media gas/udara yang bergerak
Placer Aeolian (jarang)
Placer residual. Partikel mineral/bijih pembentuk cebakan terakumulasi langsung di atas batuan sumbernya (contoh : urat mengandung emas atau kasiterit) yang telah mengalami pengrusakan/peng-hancuran kimiawi dan terpisah dari bahan-bahan batuan yang lebih ringan. Jenis cebakan ini hanya terbentuk pada permukaan tanah yang hampir rata, dimana didalamnya dapat juga ditemukan mineral-mineral ringan yang tahan reaksi kimia (misal : beryl).
Placer eluvial. Partikel mineral/bijih pembentuk jenis cebakan ini diendapkan di atas lereng bukit suatu batuan sumber. Di beberapa daerah ditemukan placer eluvial dengan bahan-bahan pembentuknya yang bernilai ekonomis terakumulasi pada kantong-kantong (pockets) permukaan batuan dasar.
Placer sungai atau aluvial. Jenis ini paling penting terutama yang berkaitan dengan bijih emas yang umumnya berasosiasi dengan bijih besi, dimana konfigurasi lapisan dan berat jenis partikel mineral/bijih menjadi faktor-faktor penting dalam pembentukannya. Telah dikenal bahwa fraksi mineral berat dalam cebakan ini berukuran lebih kecil daripada fraksi mineral ringan, sehubungan : Pertama, mineral berat pada batuan sumber (beku dan malihan) terbentuk dalam ukuran lebih kecil daripada mineral utama pembentuk batuan. Kedua, pemilahan dan susunan endapan sedimen dikendalikan oleh berat jenis dan ukuran partikel (rasio hidraulik).
Placer pantai. Cebakan ini terbentuk sepanjang garis pantai oleh pemusatan gelombang dan arus air laut di sepanjang pantai. Gelombang melemparkan partikel-partikel pembentuk cebakan ke pantai dimana air yang kembali membawa bahan-bahan ringan untuk dipisahkan dari mineral berat. Bertambah besar dan berat partikel akan diendapkan/terkonsentrasi di pantai, kemudian terakumulasi sebagai batas yang jelas dan membentuk lapisan. Perlapisan menunjukkan urutan terbalik dari ukuran dan berat partikel, dimana lapisan dasar berukuran halus dan/ atau kaya akan mineral berat dan ke bagian atas berangsur menjadi lebih kasar dan/atau sedikit mengandung mineral berat.
Placer pantai (beach placer) terjadi pada kondisi topografi berbeda yang disebabkan oleh perubahan muka air laut, dimana zona optimum pemisahan mineral berat berada pada zona pasang-surut dari suatu pantai terbuka. Konsentrasi partikel mineral/bijih juga dimungkinkan pada terrace hasil bentukan gelombang laut. Mineral-mineral terpenting yang dikandung jenis cebakan ini adalah : magnetit, ilmenit, emas, kasiterit, intan, monazit, rutil, xenotim dan zirkon.
Mineral ikutan dalam endapan placer. Suatu cebakan pasir besi selain mengandung mineral-mineral bijih besi utama tersebut dimungkinkan berasosiasi dengan mineral-mineral mengandung Fe lainnya diantaranya : pirit (FeS2), markasit (FeS), pirhotit (Fe1-xS), chamosit [Fe2Al2 SiO5(OH)4], ilmenit (FeTiO3), wolframit [(Fe,Mn)WO4], kromit (FeCr2O4); atau juga mineral-mineral non-Fe yang dapat memberikan nilai tambah seperti : rutil (TiO2), kasiterit (SnO2), monasit [Ce,La,Nd, Th(PO4, SiO4)], intan, emas (Au), platinum (Pt), xenotim (YPO4), zirkon (ZrSiO4) dan lain-lain.
Eksplorasi bijih besi
Penyelidikan umum dan eksplorasi bijih besi di Indonesia sudah banyak dilakukan oleh berbagai pihak, sehingga diperlukan penyusunan pedoman teknis eksplorasi bijih besi. Pedoman dimaksudkan sebagai bahan acuan berbagai pihak dalam melakukan kegiatan penyelidikan umum dan eksplorasi bijih besi primer, agar ada kesamaan dalam melakukan kegiatan tersebut diatas sampai pelaporan.
Tata cara eksplorasi bijih besi primer meliputi urutan kegiatan eksplorasi sebelum pekerjaan lapangan, saat pekerjaan lapangan dan setelah pekerjaan lapangan. Kegiatan sebelum pekerjaan lapangan ini bertujuan untuk mengetahui gambaran mengenai prospek cebakan bijih besi primer, meliputi studi literatur dan penginderaan jarak jauh. Penyediaan peralatan antara lain peta topografi, peta geologi, alat pemboran inti, alat ukur topografi, palu dan kompas geologi, loupe, magnetic pen, GPS, pita ukur, alat gali, magnetometer, kappameter dan peralatan geofisika.
Kegiatan pekerjaan lapangan yang dilakukan adalah penyelidikan geologi meliputi pemetaan; pembuatan paritan dan sumur uji, pengukuran topografi, survei geofisika dan pemboran inti.
Kegiatan setelah pekerjaan lapangan yang dilakukan antara lain adalah analisis laboratorium dan pengolahan data. Analisis laboratorium meliputi analisis kimia dan fisika. Unsur yang dianalisis kimia antara lain : Fetotal, Fe2O3, Fe3O4, TiO2, S, P, SiO2, MgO, CaO, K2O, Al2O3, LOI. Analisis fisika yang dilakukan antara lain : mineragrafi, petrografi, berat jenis (BD). Sedangkan pengolahan data adalah interpretasi hasil dari penyelidikan lapangan dan analisis laboratorium.
Tahapan eksplorasi adalah urutan penyelidikan geologi yang umumnya dilakukan melalui empat tahap sbb : Survei tinjau, prospeksi, eksplorasi umum, eksplorasi rinci. Survei tinjau, tahap eksplorasi untuk mengidentifikasi daerah-daerah yang berpotensi bagi keterdapatan mineral pada skala regional. Prospeksi, tahap eksplorasi dengan jalan mempersempit daerah yg mengandung endapan mineral yg potensial. Eksplorasi umum, tahap eksplorasi yang rnerupakan deliniasi awal dari suatu endapan yang teridentifikasi .
Eksplorasi rinci, tahap eksplorasi untuk mendeliniasi secara rinci dalarn 3-dimensi terhadap endapan mineral yang telah diketahui dari pencontohan singkapan, paritan, lubang bor, shafts dan terowongan.
Penyelidikan geologi adalah penyelidikan yang berkaitan dengan aspek-aspek geologi diantaranya : pemetaan geologi, parit uji, sumur uji. Pemetaan adalah pengamatan dan pengambilan conto yang berkaitan dengan aspek geologi dilapangan. Pengamatan yang dilakukan meliputi : jenis litologi, mineralisasi, ubahan dan struktur pada singkapan, sedangkan pengambilan conto berupa batuan terpilih.
Penyelidikan Geofisika adalah penyelidikan yang berdasarkan sifat fisik batuan, untuk dapat mengetahui struktur bawah permukaan, geometri cebakan mineral, serta sebarannya secara horizontal maupun secara vertical yang mendukung penafsiran geologi dan geokimia secara langsung maupun tidak langsung.
Pemboran inti dilakukan setelah penyelidikan geologi dan penyelidikan geofisika. Penentuan jumlah cadangan (sumberdaya) mineral yang mempunyai nilai ekonomis adalah suatu hal pertama kali yang perlu dikaji, dihitung sesuai standar perhitungan cadangan yang berlaku, karena akan berpengaruh terhadap optimasi rencana usaha tambang, umur tambang dan hasil yang akan diperoleh.
Dalam hal penentuan cadangan, langkah yang perlu diperhatikan antara lain :
- Memadai atau tidaknya kegiatan dan hasil eksplorasi.
- Kebenaran penyebaran dan kualitas cadangan berdasarkan korelasi seluruh data eksplorasi seperti pemboran, analisis conto, dll.
- Kelayakan penentuan batasan cadangan, seperti Cut of Grade, Stripping Ratio, kedalaman maksimum penambangan, ketebalan minimum dan sebagainya bertujuan untuk mengetahui kondisi geologi dan sebaran bijih besi bawah permukaan.
Sunday, 30 May 2010
Jasa Konsultan Survey Tambang
Jasa Analisis, Pemetaan,CV.Jogja Geologi Survey menawarkan jasa analisis sample, pemetaan dan pembuatan laporan ataupun tugas akhir. Dikerjakan secara cepat,
detail, dan professional dengan harga yang terjangkau
Jasa yang kami tawarkan antara lain :
1.Design dan perhitungan cadangan endapan
2.Digitasi peta topografi 3 dimensi
3.Geology method analyzed :
- Sayatan tipis petrografi (thin section)
- Mineragraphi (polish section)
- XRD Analysis
- Geokimia (XRF)
Pendampingan preparasi dan analisis foram besar dan kecil
Pemetaan geologi survei awal dan lanjut
Note : Rp. 100,000/hri jika hanya sebagai pendamping
Tidak termasuk biaya akomodasi
Rp. 300,000/hri untuk di luar Pulau Jawa
Measured stratigraphic (Stratigrafi terukur)
Note : Rp. 100,000 jika hanya sebagai pendamping
Tidak termasuk biaya akomodasi
Penyusunan laporan seminar industry
Note : Hingga Acc.
Analisis, pembuatan peta (geologi, geomorfo, lintasan, pola aliran
sungai) dan penyusunan Tugas Akhir
Note : Hingga Acc.
Tidak termasuk biaya analisis lab. unt
JOGJA GEOLOGI SURVEY
Penyusunan Laporan Akhir
terjangkau.
(Mine Plane)
Akhir.
untuk studi kasus
Rp. (Nego)
Rp. 2,800/km2
Rp. 55,000/spl
Rp. 65,000/spl
Rp. 150,000/spl
Rp. 1,000,000/spl
Rp. 20,000/spl
Rp. 150,000/hri
Rp. 150,000/hri
Rp. 750,000
Rp. 1,500,000
Contac Person :Faidzil Chabib 085323353108/>JGS Office :
Perum Wirokerten Jl. perum Jambusari Indah, Villa gading Blok D no.64 />Sleman Yogyakarta
Saturday, 10 April 2010
Genesa Batubara
Batubara adalah batuan sediment (.padatan ) yang dapat terbakar, berasal dari tumbuhan, yang pada kondisi tertentu tidak mengalami proses pembusukan dan penghancuran yang sempurna karena aktivitas bakteri anaerob, berwarna coklat sampai hitam yang sejak pengendapannya terkena proses fisika dan kimia, yang mana mengakibatkan pengayaan kandungan karbon.
.
Proses pembentukan batubara dari tumbuhan melalui dua tahap, yaitu :
Tahap pembentukan gambut (peat) dari tumbuhan yang disebut proses peatification
Gambut adalah batuan sediment organic yang dapat terbakar yang berasal dari tumpukan hancuran atau bagian dari tumbuhan yang terhumifikasi dan dalam keadaan tertutup udara ( dibawah air ), tidak padat, kandungan air lebih dari 75 %, dan kandungan mineral lebih kecil dari 50% dalam kondisi kering.
Tahap pembentukan batubara dari gambut yang disebut proses coalification
Lapisan gambut yang terbentuk kemudian ditutupi oleh suatu lapisan sediment, maka lapisan gambut tersebut mengalami tekanan dari lapisan sediment di atasnya. Tekanan yang meningkatakan mengakibatkan peningkatan temperature. Disamping itu temperature juga akan meningkat dengan bertambahnya kedalaman, disebut gradient geotermik. Kenaikan temperature dan tekanan dapat juga disebabkan oleh aktivitas magma, proses pembentukan gunung api serta aktivitas tektonik lainnya.
Peningkatan tekanan dan temperature pada lapisan gambut akan mengkonversi gambut menjadi batubara dimana terjadi proses pengurangan kandungan air, pelepasan gas gas ( CO2, H2O, CO, CH4 ), penigkatan kepadatan dan kekerasanb serta penigkatan nilai kalor.
Komposisi batubara terdiri dari unsur C, H, O, N, S, P, dan unsur unsur lain (air, gas, abu)
Secara Horisontal maupun Vertikal endapan batubara bersifat heterogen.Perbedaan secara horisontal disebabkan oleh:
-Perbedaan kondisi lapisan tanah penutup
-Mineral pengotor yang dibawa oleh sedimen rawa.
Perbedaann vertical terajdi karena:
Pengendapan berkali2, endapan yang paling bawah yang paling tua dengan kualitas terbaik.
Teori berdasarkan Tempat terbentuknya
Teori Insitu :
Bahan2 pembentuk lapisan batubara terbentuk ditempat dimana tumbuh2an asal itu berada. Dengan demikian setelah tumb mati, belum mengalami proses transportasi segera tertutup oleh lapisan sedimen dan mengalami proses coalification.
Ciri :
-Penyebaran luas dan merata
-Kualitas lebih baik
Cth : Muara Enim
Teori Drift:
Bahan2 pembtk lapisan batubara terjadi ditempat yang berbeda dengan tempat tumbuhan semula hidup dan berkembang. Dengan demikian tumbuhan yang telah mati mengalami transportasi oleh media air dan terakumulasi disuatu tempat, tertutup oleh lapisan sedimen dan mengalami coalification.
Ciri :
-Penyebaran tdk luas ttp banyak
-kualitas kurang baik (mengandung psr pengotor).
Cth : pengendapan delta di aliran sungai mahakam.
Reaksi Pembentukan BB
5(C6H10O5) à C20H22O4 + 3CH4 + 8H2O +6CO2 + CO
Cellulosa Lignit gas metan
5(C6H10O5)à C20H22O4 + 3CH4 + 8H2O +6CO2 + CO
Cellulosa bitumine gas metan
Bentuk Lapisan2 Batubara
Berdasarakan lapisan batubata dibagi menjadi 2:
-Plies (lapisan utuh)
-Split (terdapat 2 lapisan atau lebih)
Pada awal pembentukan gambut sebagian besar perlapisan mendatar (tergantung dr topografi cekungan pengendapannya).
Setelah bekerja gaya geologi akan terdapat bermacam2 bentuk perlapisan Batubara.
1. Horse Back (tjd post depositional)
2. Pinch (tjd post depositional)
3. Burriea Hill ( tjd krn adanya intrusi magma)
4. Fault (patahan)
Patahan bukan hanya tjd krn gempa namun juga bisa krn lap dibawahnya adl psr yg dlm keadaan jenuh bisa berpindah.
5. Lipatan